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LIMIT THEOREMS FOR SUMS OF INDEPENDENT VARIABLES

TAKING INTO ACCOUNT LARGE DEVIATIONS. II

Yu. V. Linnik

2. Narrow zones of local and integral normal attraction.

0. Let us follow the symbols used in Part I [16]. Let us

consider the narrow zones of local normal convergence for a variable

Xj of class (d) [16]. It will be more convenient for us to start not

from the zones [0, * (n)] and [h -*(n), 0], but from the functions

h(x), which were described in Section I of Part I [16]. Let us

examine the conditions

Eexph(Xi )< oo. (0.1)

Let the function h(x) of class I be given (16]. It is subject to

the conditions [16]:
(log x),+ < h (x) < x'/., (x > 1) (0.2)

h(x) = exp(H(log x)), where H(x) is monotonic and differentiable

H'(z)'.1; H'(z)-oO , z-.oo, (0.3)
H' (z) exp H(z)> c,z'+C,. (0O.4 )

Let us define a new positive function A(n) by the equation

h (If ;iA ()) -'(A (n))2. (0.5)
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heoxeJ i. Condition (0.i),where h(x) belong to class I, is

necessary in order that the zones [0, A (n) p (n), 0] be z. u. 1. n.

a. [zones of uniform linear normal attraction], and is sufficient in

order that the zones [,A(n)/p(n)]; [-A(n)/p(n), 0] be z. u. 1. n. a.

Theorem 2. The same proposition as in Theorem i is valid for z.

n. a. (integral), and convergence in the corresponding zones is uniform.

For h(x) belonging to class II, let us define A(n) from the

condition:.A(n)=V )=f;j(jiog,. Because of the properties of h(n),

the defined A(n) will differ frbm P(n) only by the factor of A(n),

which Was determined from Eq. (0.5). Further, the following theorems

are valid:

Theorem 3. If h(x) belongs to class II, then a proposition

analogous to Theorem i for the above function A(n) is valid for the

z. u. 1. n. a.

Theorem 4. For h(x) of class II, and the above-indicated A(n),

a proposition analogous to Theorem 3 is valid for the z. n. a.

For h(x) of class III we have the narrowest zones. Here let

A(n) = /log n.

Theorem 5. For h(x) of class III and A(n) = /" log n, the same

proposition as in Theorem I is valid for the z. u. 1. n. a. and the

variables X.C(d); the same proposition as in Theorem 2 is valid for

the z. n. a.

1. First of all, let us explain the appropriateness of conditions

(0.2), (0.3) and (0.4) imposed on h(x).

The condition h(x) L (log # " o (the significance of which is

to be explained later) ensures that the zones are not the narrowest,

and it can be compared with the condition I exp 3 logIX1 < 40, which

ensures only the existence of a third moment. The condition h(x) <

FTD-TT-62-u48/1+2+4 -2-



SA, Indicates that the zones are narrow [16]. According to Theorem

3 of the previous work [16], a condition of the form of (2.i) of this

work [16] corresponds to the zones [0, na(p(n))±1]; [-n(p(n))±1, 0]

i iwhen a < s... At cs < 6 , the exponent of 4k/2a + i under this condition

is < 1/2. It is natural to assume that h(x) is monotonic and differ-

entiable, and to represent it in the form of h(x) = exp (H(log x))

when x ±, where H(z) is the same. If it is assumed that h'(x) is

monotonic (which is natural), then this leads to conditi'n (0.3)

(the narrowness of the zone). Violation of (0.4) with the indicated

monotonicity of h'(x) would lead to violation of the left inequality

in (0.2).

2. Let us prove that condition (0.1) is neaessary in order that

[0, A(n)p(n)]; [-A(n)p(n), 01 be z. n. a. Let these zones be z. n. a.

Then at n > no we have (because A(n)-+ w as n-+ -)

p (Z.> A "(n) exp JA , (2.2.)

Let condition (0.2) not be fulfilled. Then a sequence Xm so

is found such that either

P (X x,) > exp (-;h (x,,,)), (2.2)

or
P (X < - x) > exp (-2h (Ix. )). (2.3)

Let (2.2) be fulfilled. For a sufficiently large value of m,

let us take n such that x,=°an'hA(n)p(a)+0; 1II. . The event indicated

in (2.1) certainly occurs if two independent events occur:

Xla'.A tn)p(n) -F .X +X+... + X.jaV' < 1. Hence, according to the central

limit theorem and (2.2), we have:

c. exp I- 2h (a Y A (n) p (n) + 0)1> c. exp I- 2h (2* YWA () p (n))].

FTD-TT-62-u48/i+2+4 -3-



Whon , r are sufficiently large, according to condition (0.3)

h (Z) =- exp H (log J + iog ij) < exp (H (Iog 4) + o(log i)) = h (4) (2.5)

Letting J -)'A (n); tj = 2ap (n). , we find

2h (2aJo(A (n)p (n)) = 2 (A (n))' (p (n)).-(1, (2.6)

which contradicts (2.1). Analogous reasoning is carried out for case

(2.3). If Xc(Od) [i], then condition (0.1) is necessary in order

that [0,A(n)p(n)] and [-A(n)p(n), 01 both be z. u. 1. n. a. The

proof is analogous to the preceding one, taking into account the

reasoning in Section 4 of Part I ji6].

3. Let us consider the problem of whether condition (0.1) is

sufficient in order that the zones [0,A(n)p(m)] and [-A(n)p(n), 01 be

z. u. 1. n. a. when XjC(d). In condition (0.1) we can examine the

function ah(x) instead of h(x) (positive constants), and, therefore,

without losing generality, assume a = i. At a given p(n), let us

define the function A,(n) from the equation

h)A ) ((,(,,,. (3.)

If we prove that the zone [0, Ap(n)] is a z. u. 1. n. a., then

the zone [0, A 1n) will also bq, since it is narrower. Indeed,

letting Ap(n) = A(n)7(n), we find from (3.1), (0.5) and the reasoning

in Section 2

(7 () ( (")-'0"' (T ("))'; T (") =(-7.

Let

log A, (n) = X .(n), (3.2)

and we obtain from (3.1)

H (log A(n) , - 2X, (n). (3.3)
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Now letting

1 og(n) = =loglog n - p, (n).t, (n) 2 c (3.4 )

we have
H (X, (n) + I (n)) -X (n); X, (n) + 1p (n) -(2A (n)). (.5)

Further, let us determine the small number p from the condition

n'-21& : eB (A , (n))' =- e17 exp (2X, (n)) ( 3.6 )

(B, as in Part I [16], is a bounded number, not always the same).

Inasmuch as (I - 2p) log = B + 2X, (n),
~&log. n B + - x, (.)n . ,()+p,() X() 37

I&og=B LR2-X )=I 1 (n)±Xp(n)+p2(n)-2X' (n). (3.7)
taking (3.5) into account, we find

lilog n= H-'(2X, (n)) -l p, (n) - 2X, (n). (3.8)

while (3.7) gives
=. XP (n) B

2 Iog Iogn (3.9)

4. Now, in the symbols of Part I [16], we obtain formulas (5.6)
and (6.5)":. a .(X) . ( (1))" exp (- itx )(W) di +B exp (- (if

p, x -- _ -- (4.1)

Bearing in mind the use of the method [16], we wish to bound 4(q)(t)

when Itli < n-4:

@(1) -= B! xexp (-h (x)) d.,_ B. exp (q log x--(x)) dx.(.)
a i(

Now let us establish that

Al'(x) - o as x -cc. (4.3)

In fact
h (x) = exp H (log x); xh'(v) -- a'  (/II(logx)) 1,(log x) -.o

d log x

on the strength of (0.4). The integrand in (4.2) in the exponent

has the form of q log x - h(x), and its derivative is xR - h'(x).
x
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Iet up Aet up the saddle-point equation

xh' .) - q. (4.4)

On the strength of (4.3), it has a unique solution for q > q0 . Let

us denote this solution by Qo(q).

Lemma i. A bound of the following form is valid:

Sxexp(-h(x))dx -!exp(Bq !-qlogQ 1(q)--h(Qo(q))). (41.5)

Let us find the abscissa x = xi such that when x L x,

h(x)>2qlogx; h(v) -qlogx> h -, (4.6)

Since h(x) (log a)-+ o according to (0.2), then (4.6), certainly,

will be fulfilled if (Iogx'+t.>2qlogx; Iogxr(2q)I1. x>cxp(2q)I-. -xi, since

when x>x, h(x)-qlogxj,±h(),.. !(ogx),I-. we have

oSxQ d1 (-,, (V)),A M B. (4.7)

The function q log x - h(x) has a maximum at x = Qo(q) and then

decreases (see (4.4)) so that

CO

xS exp (- h (x)) d v = 8 exp (Bq + q log Q, (q) -h (Q, (q))). (41.8)
It

Using Lemma I, we obtain

V,, (0 )- B exp q (B +j log Q, (q) -- h (Q, (q)) - log q
qi q (4.9)

Letting (as in Part I [16], (6.7))

+(t +I) - qi(o)+ +.+ .L"" (4.10)
qI

we obtain when K(t) = log q(t), (Itt eo):

,K'4 (1o) - (log ,j)4 V -- t))q , (It. -)

5. Let

L (q) &-logQ6 (q)',.. ( (q)) - logq (5.1)

q
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and let us show that L(q) is a non-decreasing function of q. From

the equality

Q6 () h' (Q.()) q (5.2)

by simple calculation it is deduced that
L' (q) '- (- 9. (Q. (q) - , 1). (5.3)

Now it is sufficient to show that h(Qo(q)) => q or h(Q0 (q)) - Qo (q)

• hl(qo(q) ) or d log h(y)/d log y 5- I, i.e., H'(z) 5- 1, which corre-

sponds to (0.3). Thus, L(q) is monotonic. From (4.9) let us derive

q t ' B it ' exp fBq + qL (q)). (5.k)

Let us choose the contour Itl = e-' such that (5.4) is sufficiently

small over it. Let

v = v (q) = c, + L (q), (5.5)

where cl is sufficiently large. Then, when 1'ti e-'

Bexp(Bq-c 1q-qL(q) + (q)) Bexp -2) (5.6)

,+ : + + f'q, .)', TL (5.7)
11 2! qI 2

so that
3

2>I 2 ,1-. (5.8)

Hence when Itol < n ' L"

, log ,(L Bq'£ Id - (5.9)

Ill =- q

Bq' exp (qv (q)) = B exp (Bq + q log Q0 (q) - h (Q6 (q))).

supi Kcm  (1) -- 8exp nt(B + logQ.(m)- (

h m (Q. (m)) - log m - It log n)}.

Now let us determine m by using the equalities

log Qo (ni) H H-' (2X, (n)); (5.11)

exp H (log Q9 (i)) h (Q9 (m)) exp I2X, (n). (5.12)
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Let ug sibstitute this into (5.i0) and, taking (3.8) into account,

reduce (5.10) to the form

Bexpfm (B-P(n) +2Xp(n)-logm--Lexp2Xp(n))} 513

- B exp (m (B - (n) - exp (2X, (n) - log m) + 2X, (n) - Iog m)).

Now let us show that

2X,()-logm-.oo a n-o.(

On the strength of (5.2)

exp H (log Q. (m)) H' (log T. (m)) = Q6 (m) h' (Q. (m)) =i m. (5.15)

From (5.$i) we find: H(log 9 0 (m)) = 2Xp(n). Let us substitute

into (5.15)

exp (2Xp (n)) H' (log Q@ (m)) - exp (2X, (n)) H' (Xp (n) + I (n)) - m.

Hence, on the strength of (0.3),
2X , (n) - log, n - - log H' (X, (n) + t, (,)) -.o 00. ( 5.16 )

Using (5.14), we obtain for (5.13) the bound

B exp (- c, exp (2X, (n))). (5.17)

Note that because of (3.6), exp(2X,(n)) = Bnl- 211

6. Now (5.10) gives

sup Ki") (t) - B exp (-c'exp (2X, (n))) (6.1)

so that when It I n- '

Kt) -! t "  -m - Bexp(- c exp2X, (n)), (6.2)

where
1, = K"n(O) = B exp (Br - r log Q (r) - h (Q 0(r))). (6.3)

In view of the fact that .2Xp(n)>H log = log h >

>A (log p ))1+".n exp (-cl exp 2X, (n)) B exp (-c exp2X ,(n)), so that

nK () = nK (1) -+ B exp (- c.&nk-2), (6.4f)

where

-8-



M

r 3 (6.5)

Hence it is easy to derive

PZ. Wx =! ET exp( !L+ K.Q) htf;1x) di+ ep c4n-*), (6)

where

F., (6.7)

Let us take the integral function

exp (nK, (1)). (6.8)

Let x = - n. where the small number cn is determined as

follows: if exp(2X,(n))/m > log n, then we take an = TOU p and if
exp 2X(n)/m > log n, we take w p=- In.

100 mlogn
When r m and It I l- n1 , let us consider

*,_11- = B expr (B + I ,)-! h (Q. (,)) -- log r - p, log n). ( 6.9 )

Now we note that X,(n) = o(log n), as is apparent from (3.3) and (0.3)

(because according to (0.3), H(z) O *(z)). In view of this, it follows

from (3.7) that
-L + 0 (I>0,49 +'o(1). (6.10)

Therefore, when 3 < r < c 3

,T =(6.11)

Let us move to the case of c3 <_. r < m. Let us isolate the values

c3 _ r (log n)i + /2 and prove the bound

log Q9 (r) = B exp r 4 1. (6.12)

From (0.4) we have xh'(x)>(logx)+. . In view of this, from the

equality Q*(r)h'(Q*(r)) -r it follows that (logQ.(r))+t,<r; Q,(r)<expri*,

which proves (6.12). At the indicated values of r, (6.9) gives

B exp r (B + r'+% - 0,48 log (6.) = )

-9-



Sunation of these expressions with respect to c,<r((logn)1+%.1 gives

(6. 14)

Now let (log n)' + i/2 < r i m. Because of the monotonicity of the

function L(r) (see Section 5), (6.9) does not exceed.

( h Pe (M)) -log m-P, log.) (6.15)

By comparison with (5.10) and (5.13), we obtain the bound for (6.15)

Bexpr (B -LexP2Xj(n).p 2 (n) + ologn) (6.16)

Hence taking the definition of the number wn into account, we find

for (6.9)
Bcxpr ( P (n) 'ign +Bexpr(-32!2 -,exp2X (n)).

By swmming these expressions with respect to r, (logx)+%%Lr~m,'

for the corresponding part of K (t) we obtain the bound

Bn". (6.18)

Gathering together bounds (6.11), (6.14) and (6.18), we find,

when Itl - n

nK, (1) ;- B exp,,K, () = B. (6.19)

7. Let

e = nK) = (7.1)

then, in accordance with (6.19),

Zr ' .1 - ,P (nK3 (t)) di , Br! ,n,, (7.2)

2xi n (+1
71 t- = B.-)., B exp (- 2w, log n), npH r > m, II < n-. (7.3)
It

The numbers wn have various values depending upon the behavior of

exp(2X,(n))/m, as described in Section 6. Each of these cases reduces

to the bound

B ); ex .r..exp 12X, (n)I) 8exp(--exp12x(n)I). (7.4)

-10-



Thus exp In.g (I I X' + B exp (_ c4 exp 12X, (n)I).

ThuBx +x n 3 ()2zX.) j +( n ,-T)

, B exp (- ceX(,), (7.6)
S xp- -,,,,a.+-, I

pz, (X) -. exp( ax)I+

+ Bexp (- clexP(n)). (7.7)

Now let us consider

,, (7)m<.8)
a'Ir-IA

Following Section 8 of Part I [i6], we obtain for (7.8) the bound,

when r < m,

Bexp(-Lna- a)exprB+!o2! -( - ,) logn2T (-.)on 2 (7.9)
=.4( 2n,-1)- P(.),log n).-

Further, since exp(2X t (n)) Bnl-*; X,(n) l - logn + B,

then I-login - 11 o o o 0 A o

- log m - X, (n) + B - o, < log m-X,(n)... -(n .
2 2

By summing the bounds of (7.9) with respect to r = 3, 4., ... ,

m, we find the error

Bexp (n-,)= B exp(- c4 exp2X,(n)). (7.10)

By bounding the integral over (-, -n1/2 ) in the same way, we

arrive at the formula

.z, (x) 2.P r( , VV; ) (7.1.1)

-F B exp (.- c1 exp (2Xp (n))).

8. At 3 < r < n, let us now examine (16l
CO

i exp (- /2 - ig Hx) e-zeA. (8.1)

At 3 : r : c3 we have for (8.1) the bound

-. 1-



(8.2)
. ,-- 

When
l p--(n)(8.3)

(8.1) has the bound

Be-,l/I n' -in ) -Be-.,,. - (8. 4),== @( )) W ? ())'

Now let C3 < r < m. Let us assume r - q; s = pq(O < p 1/.2).

Following Section 9 (see (9.7) of Part I E16]), we obtain for C4 <__ q e m
X,. -,4,2M') (x) = B sup q (B - (I - 2p) log p, (,) +( .5

+plogq-p( -- 21)log + (p- A)logn);

Since exp(2X*jx))/m - co, then BJIm -l..oo, hence logq<logm<B+(-2p)Ilog'n.

Thus plogq-p(l-21)log.=B-v(), where v(n) L 0. Then (see Section 6)

(I,-)logn=-o., logn--oo, as n-.*o. Thus (8.5) obtains the bound

B exp (- c4q). (8.6)

If q L P2 (n)' then the sum of these bounds at P2 (n) < q < m is added

to the total bound
B

P3(n) (8.7)

Then let p (n) be chosen such that
log q < 2I)lg(I - 2p) log n. (8.8)

(note that (i - 2i±) log n-> w). Then (8.5) has the bound

sup (Bexp(-q(, -2p)logp,(n))- Bexp(-qP(.-)logn)) - Bexp(-qp.(n)). (8.9)

By summing the latter with respect to q < q _p 2 (n), we obtain the

bound
B

P.(n) (8.1o)

This proves the local limit theorem for the zones 10, n'1.-ip(n)j and

[-n/p, (n), 01. Then, on the strength of (3.1) and (3.6), Ap(n)=exp(X,(n)).

-12-



canYr-o. This proves Theorem i.

9. Let us consider integral Theorem 2, following Sections ii

through I of Part I [16]. Now let Xj have random values of a

general form; IXj = 0; D(Xj) - i. Let h(x) be a class-I function

and let condition (0.1) be fulfilled. At first let us follow Section
£

3. Let us define l from condition (3.6) and let a = . - .. We shall

prove that the zones [0, no/p,(n)] and [-ne/p,(n), 0] are z. n. a.

Let us go into the first of these. We shall follow the symbols and

reasoning of Sections ii through I of Part I [16], pointing out only

the essential differences. It is important for us that (see (3.3))

n'/r-,& -na = eB exp (X (n)) > ( 4 ( _In ) ) "> (log n)t+,A. (9 -.1)

Following the reasoning and symbols of Sections Ii through 14 of Part

I [16], we introduce Yn' *n(t) and arrive at formula (12.3) of that

work.

Note that n = n-w (log 1i),+to, so that

n11+1 exp (- cna) -- exp (- c,n'0 ) ( 9.2)

(see formula (12.5) of Part I [16]).

In view of this, formulas (12.7) and (12.8) and (13.1) through

(13.5) of Part I [16] are valid. Bound (7.2) of this work is taken

for Xr. Following Section 13 [16], we arrive at formula (13.11). We

must, however, then give a more accurate bound in this formula. It

is written as follows:

3' e-02HIf' (x) dx - Bqf q1 (q t 2s)! (9.3)

When l<xj<n"/p#(n), Q~q-2s-q(-2p) the bound is easily found

by the saddle-point method (Q i):

V =/'uO Bx - exp -i- +-I log.. +IQ

-13-



We see that if xt>m>Q; x> > , then (9.4) reduces to the bound

Reasoning as in Section 8, we arrive at a proof of the integral

limit theorem for the zone 11G,n/lrn(n)I. Now let x,<if. Then (9.4) is

bounded by the value

BQx- exp (-- )exp (1 Q log Q). (9.6)

When s-, , O<p<- we take the corresponding term of (9.3), taking

into account bound (9.9) and the bounds x At 0 B W (ulq log n) a-,/2 a sxp (-q log n/2),
q

which must be multiplied by that term. As a result, when multiplying

by 1 e 1 e have the following bound (see Section 9 [161; x, <_ jim:
Bexpq ( -2p)-.iogrm -plogq-(1 -2p) o!gq - logq-/2

-Plogp-(1 - 2p)log(l -2p) -- Iogn+ itulog n)(9)

= Bexpq(B +(..L-) ogin+ plogq-plogp- (1 - 2p)log'(1 -2p)-

(-L - JAI )logn) BexpqB+ logm- (-L-;i) logn ua.ogn).

Then (-L-A~.)ogn-tIogmt-oo, (onlogn o (see Section 8). Therefore

(9.7) has the bound

B exp (- qp, (n)). (9.8)

Summing this bound with respect to 3 < q < m, we find
B (9.9)Ps (a)'

which proves the integral theorem for the zone [i,%/_j. The zone

I-.n/p(n)-II is treated analogously, while th! zone [-1, :1] corresponds

to a known theorem. Thereby, Theorem 2 is proven.

10. Now let us consider Theorems 3, 4 and 5. Thby concern the

narrowest zones. The functions h(x) of class III (see (1.5) [16]),

which satisfy the condition

3 log x < h (x) < M log x, (.i)

where M is a constant, correspond to the case of the existence of a

third moment, but, generally speaking, to the non-existence of moments,
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starting from some number. In this case, by classical means (see (1)),

it can be established that 10. VIog/p(n) and j- o-/p(n). 01 will be z. u.

1. n. a. for values of class (d), and z. n. a. in general, and that

the zones 10, Y ognp(n); I-Fio- p(n), 01 will not be such if not all

moments exist. This is the substance of Theorem 5. These same results

can be obtained by using the means described below.

Let us take Theorems 3 and 4,. which pertain to functions of class

II. For these functions we have (see Section 1 [1.6])

P (x) log x < h (x) < (log x)2, (0.2)

where
h(x) -- M (x)log x - AN (log x)jogx, (,0.3)

where

I'(z) -Oas z-.o. (10.4)

Let
A (n) = f() fIog-n. (10.5)

If the zones10, A(n). p(n)J and [-A(n)p(n), 01 are z. u. 1. n. a. (it is

understood that we are dealing with values of XjC(d) or z. n. a.),

then (0.1) must be fulfilled. This is proven in the same way as the

corresponding assertion in Section 2. Now let us prove that condition

(0.i) is sufficient in order that the zones l0|A(n)/p(n) and [-A(n);p(n),OJ

be z. u. 1. n. a.

Let g > 0 be a positive number, which will be fixed later on;

X C(d), we have
PZ. (X) . V"

2g() (q(t))nexp("ix )g. +Bexp(--c¢n,-*). (1,0.6)

Following Section 4, let us take the bound

") (1) .B xq'exp (- h (x))dx - B'exp(qlogx-h(x))dx. (4.0.7)
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Let q(q) be a solution of the equation

h(x)= q+4logx, I.. M(x)--q+4. (i0.8)

Then

exp(qlogx-h(x))dx =B B.X4 (±0.9)
Q(W) Qq)

jexp(qlogx-h(x))dx BQ(q) exp(qlogQ(q)) - Bexp((q+ 1) log (q)). (±0.0)

Let us use this rough bound for 9(q)(t), which is sufficient for our

purposes. From (i0.8) we find

Q (q) - M-'(q + 4).)

so that (10.10) gives

qT (1) B exp (q + i) log M- (q'+ 4). (10.12)

Following Section 4 we find
K (0) - B exp (q + 1)log M-' (q + 4), (10.13)

sup K"") 1 B exp (log M-' (m + 4) - m log n). (±o.±4)

11. Now let us choose lt according to the condition

n-0 = (A (n))'= M (n) log n. (i.1.)

Thus

p X (R) + B; X (n) -log A (n) 0 (log log n). (±1.2)
2 log 4 log n

Let T = 10- 6 . Let us take m under the condition that

log M-1 (m + 4)=- M 12o0_ + B. (11-.3 )

2

Then, on the strength of (10.4),

t+.(n t('- log n) N(log n). -M (n). (±.4)

Now from formula (10.14) we obtain, according to (1.4), (±1.2),

0a..," I ). Br '  exp ( -( - ogn + B) M, I.5

B exp(-cM()logn) -= Bexp(-c, (A ())).
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Thus we have
P- -1( x r!-3 exp 2+d+Bexp(-c,(A(n)), (11.6)

.(117)

Now we must deal with the integral function exp nK3 (t). Let

,9 o, (11.8)

and let us bound nK3 (t) when Iti I n - i . For r ! c.3 we have *r = B and

n ' I tp- 1 o (1). ( 1 9
51r e, r30

Then, when c3 < r < m we have, on the strength of (0.13),

B exp ((r + 1) log M-'(r .t- 4)- Ir log n - 2 log r) -

=Bexp(r to " Bn (

From (11.9) and (11.10) at It < n-l we derive

,z1 (1) = B (11..1)

and hence, using the Cauchy integral (see (7.2)),

: X, m-'Br! nr.. $ .1

When r > m, Iti < m-41, from (11.10) we find

- = Bexp (-0,005 m logn) (.
, 21 (113)

= B exp (- c, M (n) log A) = B exp (-- c, (A (n))").
12. Hence

2 i' exp( 2 )( .VIS
z.(x)- V_ - -x 7 T+ t) 1.+

+ B exp (- cl0 (A (n))').

Let us substitute = %/ :

pZ, (x) ., exp-.... i ± - ( 7 y d + (12.2)

+ B exp (- c,, (A (n))').

At a given r < m let us consider
c0

r, (1/dr . 2) 4
n'/lr-A
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Factoring out exp(--!.in-,A). let us bound the second factor in (12.3).

Taking (11.4) into account, we find

2or 2 ~j1g-.2 4 (12-5)

Therefore, (12.3) has the bound Bn-r/4, and the sum with respect to

r > c3 gives (i). Then ni " 24 = (A(n))a, so that from (12.2) we find

p2 ,(X) =-L [ "exp (- , I ,

2n-0 2P- M (12.6)
+B exp (-ce (A (n))');

the term . e-X'i, is isolated from (12.6); here

A< A (R) (12.7)
O x p-(n) - P,(n)

When 3 r c. the sum of the corresponding terms will equal

o(1)e-1'2. (12.8)

When c 3 < r < m, following Section 8, we arrive at an examination of

the expression

r (B-(I -2p)logp,(n)+plogr-p(I-2p,)logn-(p -pl)logn). (12.9)

Here log r : log m = B log log n (see (11.4)). In view of this, (12.9)

gives the bound

Bir (12.10)

Summation with respect to c3 <. r < m gives the error

8. (12.11)

after which, it follows from (12.6) that

Pz,(x) . t - exp (-- x'/2) (I + o (I)). (12.12)

The zone i-A(n)/p7 (n), 01. is treated analogously.

13. The integral theorem is proven exactly as in Section 9;

here there are rather rough bounds derived in Sections 10 through 12.

It is also essential (see Section 9) that (A(n))'=M(n)logn>Np(n)logn (see

(10.2)). In view of this

FTD-TT-62-i)48/1+2+4 -18-



n1+1 exp (- cl1 (A (n))') =exp (- CL3 (A (n))') ( 1

(see formula (12.5) (16] and we can reason further, as in Section 9.

Submitted June 28,. 1960
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